Classification of Multiple Power Quality Disturbances by Tunable-Q Wavelet Transform with Parameter Selection

Author:

Yang Lin1,Guo Linming1,Zhang Wenhai1,Yang Xiaomei1

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Identifying power quality (PQ) disturbances is an important prerequisite for developing mitigation measures to improve PQ. However, the coupling of multiple PQ disturbances in the noise condition makes it difficult to achieve effective feature extraction and classification. This article proposes a novel method to identify multiple PQ disturbances by integrating improved TQWT with XGBoost algorithm. The improved TQWT is proposed to automatically select the proper tuning parameters by screening the spectral information of PQ signals. Then, the improved TQWT is used to decompose PQ disturbances into sub-bands for further feature extraction. Optimum feature selection and classification are implemented in XGBoost. Classification accuracies of 26 categories of synthetic PQ disturbances under different noisy levels are tested and compared with existing methods. Results indicate that the proposed method is efficient and noise-resistant, and the classification accuracy can reach 97.63% under 20 dB noise, and keep above 99% under lower level noise.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3