Abstract
User-friendly and energy-efficient methods able to work in noncontinuous mode for in situ purification of olive mill wastewater (OMW) are necessary. Herein we determined the potential of oxidized multiwalled carbon nanotubes entrapped in a microporous polymeric matrix of polydimethylsiloxane in the removal and recovery of phenolic compounds (PCs) from OMW. The fabrication of the nanocomposite materials was straightforward and evidenced good adsorption capacity. The adsorption process is influenced by the pH of the OMW. Thermodynamic parameters evidenced the good affinity of the entrapped nanomaterial towards phenols. Furthermore, the kinetics and adsorption isotherms are studied in detail. The presence of oil inside the OMW can speed up the uptake process in batch adsorption experiments with respect to standard aqueous solutions, suggesting a possible use of the nanocomposite for fast processing of OMW directly in the tank where they are stored. Moreover, the prepared nanocomposite is safe and can be easily handled and disposed of, thus avoiding the presence of specialized personnel. After the adsorption process the surface of the nanomaterial can be easily regenerated by mild treatments with diluted acetic acid, thus permitting both the recyclability of the nanomaterial and the recovery of phenolic compounds for a possible use as additives in food and nutraceutical industries and the recovery of OMW for fertirrigation.
Funder
Regione Puglia
Fondazione Cassa di Risparmio di Puglia
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献