Non-Invasive Determination of the Mass Flow Rate for Particulate Solids Using Microwaves

Author:

Zoad Amrit1ORCID,Koelpin Alexander2ORCID,Penirschke Andreas1ORCID

Affiliation:

1. High Frequency Technology, University of Applied Sciences Mittelhessen, 61169 Friedberg, Germany

2. Institute of High-Frequency Technology, Hamburg University of Technology, 21073 Hamburg, Germany

Abstract

This paper presents a novel technique for the mass flow rate determination of particulate solids called the “Sliding Mass Technique”. The mass flow rate is a measure of the mass of a substance that passes through a given cross-sectional area per unit time. Its calculation requires simultaneous detection of the concentration and velocity of the Material Under Test. A novel measurement technique is designed for determining the concentration of the mass flow without the necessity for density evaluation. The mass flow rate is determined by fusing the established concentration results with velocity results obtained from “Microwave Spatial Filtering Velocimetry”. A new metamaterial-based mass flow sensor for particulate solids was designed, realized and measured in an industrial environment. A Software-Defined Radio (Ettus Research™’s USRP B210) was utilized as a sensor electronic system for DAQ purposes. A MATLAB app was developed to operate the SDR. Measurements were carried out on-site using a state-of-the-art wood pellet heating system with wood pellets with different moisture contents. The measurement results were found to be in very good agreement with the expected results, which strengthens the feasibility of this newly proposed measurement technique.

Funder

Zentrales Innovationsprogramm Mittelstand

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3