Efficient Filter Design to Compensate Fabrication Imperfections in 6G Communication Systems

Author:

Stamatopoulos Ioannis1,Koutzoglou Ioannis2ORCID,Karatzidis Dimitrios I.2ORCID,Zaharis Zaharias D.2ORCID,Lazaridis Pavlos I.3ORCID,Kantartzis Nikolaos V.2ORCID

Affiliation:

1. Directorate of Transport and Communications of Eastern Thessaloniki, 54655 Thessaloniki, Greece

2. School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

In this paper, we present a consistent methodology for the reliable design of 6G-oriented filters with enhanced endurance to construction imperfections. The systematic formulation does not depend on the filter’s operating frequency and employs a robust strategy for obtaining new roots and poles of the filtering function. Essentially, it requires that all the local maxima of the filtering function do not fluctuate beyond the design attenuation levels for a set of predefined roots/poles distortions. To this purpose, two novel algorithms for the derivation of the appropriate filtering functions are developed, in the prior basis, together with a versatile optimization criterion and a heuristic comparison approach that guarantee optimal outcomes. Specifically, the principal idea of the first technique is to accurately extract the roots of the new polynomial from a system of equations on condition that the maximum local peaks of the distorted (due to imperfections) initial polynomial are below a prefixed threshold, such as the unit. Conversely, the second method develops an alternative polynomial, compressed in the amplitude and frequency range, so that a similar prerequisite regarding the maximum local peaks, is satisfied. It is stressed that both methods are fully generalized and may be applied to any polynomial combination, without increasing the overall complexity. The proposed framework is successfully verified in terms of theoretical examples and the numerical simulation of realistic waveguide and mictrostrip line filters, operating at frequencies from 2GHz to 65GHz, which unveil its superiority over existing schemes and implementations.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3