Recent Advances in Intelligent Source Code Generation: A Survey on Natural Language Based Studies

Author:

Yang ChenORCID,Liu Yan,Yin Changqing

Abstract

Source Code Generation (SCG) is a prevalent research field in the automation software engineering sector that maps specific descriptions to various sorts of executable code. Along with the numerous intensive studies, diverse SCG types that integrate different scenarios and contexts continue to emerge. As the ultimate purpose of SCG, Natural Language-based Source Code Generation (NLSCG) is growing into an attractive and challenging field, as the expressibility and extremely high abstraction of the input end. The booming large-scale dataset generated by open-source code repositories and Q&A resources, the innovation of machine learning algorithms, and the development of computing capacity make the NLSCG field promising and give more opportunities to the model implementation and perfection. Besides, we observed an increasing interest stream of NLSCG relevant studies recently, presenting quite various technical schools. However, many studies are bound to specific datasets with customization issues, producing occasional successful solutions with tentative technical methods. There is no systematic study to explore and promote the further development of this field. We carried out a systematic literature survey and tool research to find potential improvement directions. First, we position the role of NLSCG among various SCG genres, and specify the generation context empirically via software development domain knowledge and programming experiences; second, we explore the selected studies collected by a thoughtfully designed snowballing process, clarify the NLSCG field and understand the NLSCG problem, which lays a foundation for our subsequent investigation. Third, we model the research problems from technical focus and adaptive challenges, and elaborate insights gained from the NLSCG research backlog. Finally, we summarize the latest technology landscape over the transformation model and depict the critical tactics used in the essential components and their correlations. This research addresses the challenges of bridging the gap between natural language processing and source code analytics, outlines different dimensions of NLSCG research concerns and technical utilities, and shows a bounded technical context of NLSCG to facilitate more future studies in this promising area.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference89 articles.

1. Abstract syntax networks for code generation and semantic parsing;Rabinovich;arXiv,2017

2. Latent predictor networks for code generation;Ling;arXiv,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3