From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?

Author:

Chidepatil Aditya,Bindra Prabhleen,Kulkarni Devyani,Qazi MustafaORCID,Kshirsagar Meghana,Sankaran KrishnaswamyORCID

Abstract

Virgin polymers based on petrochemical feedstock are mainly preferred by most plastic goods manufacturers instead of recycled plastic feedstock. Major reason for this is the lack of reliable information about the quality, suitability, and availability of recycled plastics, which is partly due to lack of proper segregation techniques. In this paper, we present our ongoing efforts to segregate plastics based on its types and improve the reliability of information about recycled plastics using the first-of-its-kind blockchain smart contracts powered by multi-sensor data-fusion algorithms using artificial intelligence. We have demonstrated how different data-fusion modes can be employed to retrieve various physico-chemical parameters of plastic waste for accurate segregation. We have discussed how these smart tools help in efficiently segregating commingled plastics and can be reliably used in the circular economy of plastic. Using these tools, segregators, recyclers, and manufacturers can reliably share data, plan the supply chain, execute purchase orders, and hence, finally increase the use of recycled plastic feedstock.

Publisher

MDPI AG

Subject

General Business, Management and Accounting

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3