Equation Chapter 1 Section 1 Techno-Economic Analysis for the Selection of Cost-Effective Treatment for Algae Removal in Drinking Water Treatment Plants

Author:

Liu MingmengORCID,Li Lili,Mubashar Muhammad,Su Xuhui,Liang Yangchun,Zhang Haiyang,Zhang XuezhiORCID

Abstract

In this study, the responses of Dissolved Air Flotation (DAF), sedimentation, and sand filtration treatment processes on feed water with varied algal concentrations were investigated, based on a technical–economic analysis using data collected from a drinking water treatment plant (DWTP) in Guangxi, China. Cost-effective drinking water treatment processes for water sources with varied algae concentrations were proposed. The results showed that DAF was able to achieve almost 95% removal efficiency, while sedimentation was only able to reach 90% under different Polyaluminum Chloride (PACl)/dry cell weight concentrations in the DWTP. When algae concentrations increase, switching from sedimentation to DAF reduces treatment costs as DAF is more efficient for algae removal, which extends the backwashing interval of sand filtration. The threshold of sedimentation/DAF switching also depends on the quality requirement of the treated water. The lower the algae concentration in the treated water, the earlier the switch should be made from sedimentation to DAF. For instance, when the effluent thresholds are 1.2 mg·L−1, 0.8 mg·L−1, or 0.4 mg·L−1, DAF should be adopted instead of sedimentation—at feed algae concentrations of 43.9 mg·L−1, 31.5 mg·L−1, and 17.3 mg·L−1, respectively, in the raw water. The results set a baseline for a cost-effective drinking water treatment strategy based on a techno-economic model, which can precisely control the coagulation dosage and backwash interval of sand filtration coupled with sedimentation/DAF switching in algae-laden raw water.

Funder

"Intergovernmental International Science and Technology Innovation Cooperation” of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3