Artificial Neural Networks for Modelling and Predicting Urban Air Pollutants: Case of Lithuania

Author:

Bekesiene SvajoneORCID,Meidute-Kavaliauskiene IevaORCID

Abstract

This study focuses on the Vilnius (capital of Lithuania) agglomeration, which is facing the issue of air pollution resulting from the city’s physical expansion. The increased number of industries and vehicles caused an increase in the rate of fuel consumption and pollution in Vilnius, which has rendered air pollution control policies and air pollution management more significant. In this study, the differences in the pollutants’ means were tested using two-sided t-tests. Additionally, a 2-layer artificial neural network and a pollution data were both used as tools for predicting and warning air pollution after loop traffic has taken effect in Vilnius Old Town from July of 2020. Highly accurate data analysis methods provide reliable data for predicting air pollution. According to the validation, the multilayer perceptron network (MLPN1), with a hyperbolic tangent activation function with a 4-4-2 partition, produced valuable results and identified the main pollutants affecting and predicting air quality in the Old Town: maximum concentration of sulphur dioxide per 1 hour (SO2_1 h, normalized importance = 100%); carbon monoxide (CO) was the second pollutant with the highest indication of normalized importance, equalling 59.0%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference72 articles.

1. Republic of Lithuania Law on Environmental Protectionhttps://e-seimas.lrs.lt/portal/legalAct/lt/TAD/6378f2b0023211e6bf4ee4a6d3cdb874

2. Review of the National Air Pollution Control Programmehttps://ec.europa.eu/environment/air/pdf/reduction_napcp/NAPCP%20review%20report%20LT%20-%20Final%20updated%2025Jun20.pdf

3. Outdoor air pollution and asthma

4. Evaporative emissions in a fuel tank of vehicles: numerical and experimental approaches

5. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3