Abstract
The carbon release and transport in rivers are expected to increase in a warming climate with enhanced melting. We present a continuous dataset of DOC in the river, precipitation, and groundwater, including air temperature, discharge, and precipitation in the source region of the Yangtze River (SRYR). Our study shows that the average concentrations of DOC in the three end-members are characterized as the sequence of groundwater > precipitation > river, which is related to the water volume, cycle period, and river flow speed. The seasonality of DOC in the river is observed as the obvious bimodal structure at Tuotuohe (TTH) and Zhimenda (ZMD) gauging stations. The highest concentration appears in July (2.4 mg L−1 at TTH and 2.1 mg L−1 at ZMD) and the secondary high value (2.2 mg L−1 at TTH 1.9 mg L−1 at ZMD) emerges from August to September. It is estimated that 459 and 6751 tons of DOC are transported by the river at TTH and ZMD, respectively. Although the wet deposition flux of DOC is nearly ten times higher than the river flux, riverine DOC still primarily originates from soil erosion of the basin rather than precipitation settlement. Riverine DOC fluxes are positively correlated with discharge, suggesting DOC fluxes are likely to increase in the future. Our findings highlight that permafrost degradation and glacier retreat have a great effect on DOC concentration in rivers and may become increasingly important for regional biogeochemical cycles.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献