Research on Classification Algorithm of Silicon Single-Crystal Growth Temperature Gradient Trend Based on Multi-Level Feature Fusion

Author:

Liu Yu-Yu12ORCID,Mu Ling-Xia12,Zhang Peng-Ju12,Liu Ding12

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

In the process of silicon single-crystal preparation, the timely identification and adjustment of abnormal conditions are crucial. Failure to promptly detect and resolve issues may result in a substandard silicon crystal product quality or even crystal pulling failure. Therefore, the early identification of abnormal furnace conditions is essential for ensuring the preparation of perfect silicon single crystals. Additionally, since the thermal field is the fundamental driving force for stable crystal growth and the primary assurance of crystal quality, this paper proposes a silicon single-crystal growth temperature gradient trend classification algorithm based on multi-level feature fusion. The aim is to accurately identify temperature gradient changes during silicon crystal growth, in order to promptly react to early growth failures and ensure the stable growth of high-quality silicon single crystals to meet industrial production requirements. The algorithm first divides the temperature gradient trend into reasonable categories based on expert knowledge and qualitative analysis methods. Then, it fuses the original features of actual production data, shallow features extracted based on statistical information, and deep features extracted through deep learning. During the fusion process, the algorithm considers the impact of different features on the target variable and calculates mutual information based on the difference between information entropy and conditional entropy, ultimately using mutual information for feature weighting. Subsequently, the fused multi-level feature vectors and their corresponding trend labels are input into a Deep Belief Network (DBN) model to capture process dynamics and classify trend changes. Finally, the experimental results demonstrate that the proposed algorithm can effectively predict the changing trend of thermal field temperature gradients. The introduction of this algorithm will help improve the accuracy of fault trend prediction in silicon single-crystal preparation, thereby minimizing product quality issues and production interruptions caused by abnormal conditions.

Funder

National Natural Science Foundation of China

Young Talent Fund of University Association for Science and Technology in Shaanxi

China Post-Doctoral Science Foundation

Key R&D Program of Shaanxi Province

Publisher

MDPI AG

Reference28 articles.

1. Numerical simulation of the influence of thermal shield optimization on the growth of large-diameter single-crystal silicon;Teng;Artif. Cryst,2012

2. Müller, G., Métois, J.J., and Rudolph, P. (2004). Crystal Growth—From Fundamentals to Technology, Elsevier.

3. Numerical Modeling and Control of the Dynamic Single Silicon Crystal Growth Process;Zhang;IEEE Trans. Semicond. Manuf.,2021

4. Silicon Crystal Growth and Wafer Technologies;Fisher;Proc. IEEE,2012

5. Research Prospects on Data-Driven Industrial Process Operation Monitoring and Self-Optimization;Liu;Acta Autom. Sin.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3