Use of Wheat Straw for Value-Added Product Xylanase by Penicillium chrysogenum Strain A3 DSM105774

Author:

Matrawy Amira A.ORCID,Khalil Ahmed I.,Marey Heba S.,Embaby Amira M.ORCID

Abstract

The present work highlights the valorization of the bulky recalcitrant lignocellulose byproduct wheat straw (WS) for the enhanced production of value-added xylanase by the locally sourced novel Penicillium chrysogenum strain A3 DSM105774 for the first time. The optimized production of xylanase by submerged state of fermentation of WS was achieved using a three-step statistical and sequential approach: one factor at a time (OFAT), Plackett–Burman design (PBD), and Box Behnken design (BBD). Incubation temperature (30 °C), WS, and ammonium sulphate were the key determinants prompting xylanase production; inferred from OFAT. The WS concentration (%(w/v)), yeast extract concentration (%(w/v)), and initial pH of the production medium imposed significant effects (p ≤ 0.05) on the produced xylanase, realized from PBD. The predicted levels of WS concentration, initial pH of the production medium, and yeast extract concentration provoking the ultimate xylanase levels (53.7 U/mL) with an 8.95-fold enhancement, localized by the estimated ridge of the steepest ascent of the ridge analysis path, were 3.8% (w/v), 5.1, and 0.098% (w/v), respectively; 94.7% lab validation. The current data underpin the up-scaling of xylanase production using this eco-friendly, cheap, and robust methodology for the valorization of WS into the value-added product xylanase.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference63 articles.

1. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review

2. Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers

3. Energy production from biomass (part 1): overview of biomass

4. Efficient utilization of rice-wheat straw to produce value added composite products;Yasin;Int. J. Chem. Env. Eng.,2010

5. Quantitative analysis of lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw using fourier transform infrared spectroscopy;Adapa;J. Agric. Sci. Technol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3