Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components

Author:

Raszewski ZbigniewORCID,Chojnacka Katarzyna,Kulbacka JulitaORCID,Mikulewicz Marcin

Abstract

The aim of this study was to create a 3D printing material with bioactive properties that potentially could be used for a transparent removable orthodontic appliance. Materials and methods. To acrylic monomers, four bioactive glasses at 10% concentration were added, which release Ca, P, Si and F ions. The materials were printed on a 3D printer and tested for flexural strength (24 h and 30 days), sorption and solubility (7 days), ion release to artificial saliva pH = 4 and 7 (42 days) and cytotoxicity in the human fibroblast model. The released ions were determined by plasma spectrometry (Ca, P and Si ions) and ion-selective electrode (F measurement)s. Results: The material obtained released Ca2+ and PO43− ions for a period of 42 days when using glass Biomin C at pH 4. The flexural strength depended on the direction in which the sample was printed relative to the 3D printer platform. Vertically printed samples had a resistance greater than 20%. The 10% Biomin C samples post-cured for 30 min with light had a survival rate of the cells after 72 h of 85%.Conclusions. Material for 3D printing with bioactive glass in its composition, which releases ions, can be used in the production of orthodontic aligners.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3