Biosynthesis, Characterization, and Augmented Anticancer Activity of ZrO2 Doped ZnO/rGO Nanocomposite

Author:

Ahamed MaqusoodORCID,Lateef RashidORCID,Khan M. A. Majeed,Rajanahalli Pavan,Akhtar Mohd JavedORCID

Abstract

Fabrication of ZnO nanoparticles (NPs) via green process has received enormous attention for its application in biomedicine. Here, a simple and cost-effective green route is reported for the synthesis of ZrO2-doped ZnO/reduced graphene oxide nanocomposites (ZnO/ZrO2/rGO NCs) exploiting ginger rhizome extract. Our aim was to improve the anticancer performance of ZnO/ZrO2/rGO NCs without toxicity to normal cells. The preparation of pure ZnO NPs, ZnO/ZrO2 NCs, and ZnO/ZrO2/rGO NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS). XRD spectra of ZnO/ZrO2/rGO NCs exhibited two distinct sets of diffraction peaks, ZnO wurtzite structure, and ZrO2 phases (monoclinic + tetragonal). The SEM and TEM data show that ZrO2-doped ZnO particles were uniformly distributed on rGO sheets with the excellent quality of lattice fringes without alterations. PL spectra intensity and particle size of ZnO decreased after ZrO2-doping and rGO addition. DLS data demonstrated that green prepared samples show excellent colloidal stability in aqueous suspension. Biological results showed that ZnO/ZrO2/rGO NCs display around 3.5-fold higher anticancer efficacy in human lung cancer (A549) and breast cancer (MCF7) cells than ZnO NPs. A mechanistic approach suggested that the anticancer response of ZnO/ZrO2/rGO NCs was mediated via oxidative stress evident by the induction of the intracellular reactive oxygen species level and the reduction of the glutathione level. Moreover, green prepared nanostructures display good cytocompatibility in normal cell lines; human lung fibroblasts (IMR90) and breast epithelial (MCF10A) cells. However, the cytocompatibility of ZnO/ZrO2/rGO NCs in normal cells was better than those of pure ZnO NPs and ZnO/ZrO2 NCs. Augmented anticancer potential and improved cytocompatibility of ZnO/ZrO2/rGO NCs was due to ginger extract mediated beneficial synergism between ZnO, ZrO2, and rGO. This novel investigation emphasizes the significance of medicinal herb mediated ZnO-based NCs synthesis for biomedical research.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Reference48 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;Sung;CA Cancer J. Clin.,2021

2. Nanotechnology Platforms for Cancer Immunotherapy;Yang;Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.,2020

3. Zinc Oxide Nanoparticles for Therapeutic Purposes in Cancer Medicine;Wiesmann;J. Mater. Chem. B,2020

4. Zinc Oxide Nanoparticles Selectively Induce Apoptosis in Human Cancer Cells through Reactive Oxygen Species;Akhtar;Int. J. Nanomed.,2012

5. Selective Cytotoxic Effect of ZnO Nanoparticles on Glioma Cells;Ostrovsky;Nano Res.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3