Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method

Author:

Meenakshi Annamalai1,Renuga Elango12,Čep Robert3ORCID,Karthik Krishnasamy4ORCID

Affiliation:

1. Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

2. Department of Mathematics, M.O.P. Vaishnav College for Women (Autonomous), Chennai 600034, India

3. Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic

4. Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

Abstract

Around the world, the people are simultaneously susceptible to or infected with several infections. This work aims at the analysis of the dynamics of transmission of two deadly viruses, COVID-19 and Influenza, using a co-infection epidemiological model by applying the Caputo fractional derivative. Fractional differential equations are currently used worldwide to model physical and biological phenomena. Our comprehension of complicated phenomena is improved when fractional-order derivatives are used to model systems with memory effects and long-range interactions. Mathematical depictions of infectious disease dynamics and dissemination across communities are provided by epidemiological models, which are essential resources for understanding and controlling infectious diseases. These models support informed decision making to prevent outbreaks, evaluate intervention measures, and help researchers and policymakers understand how diseases spread. A subclass of epidemiological models called co-infection models focuses on studying the dynamics of several infectious illnesses that occur in the same population at the same time. They are especially useful in situations where people are simultaneously susceptible to or infected with several infections. Co-infection models provide information on the development of effective control techniques, the progression of disease, and the interactions between several pathogens. The qualitative study via stability analysis is discussed at equilibrium, the reproduction number R0 is computed, and the results are simulated using the Laplace Adomian Decomposition Method (LADM) for Fractional Differential Equations. We employ MATLAB R2023a for graphical presentations and numerical simulations.

Funder

Ministry of Education, Youth and Sports

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3