DEEP-STA: Deep Learning-Based Detection and Localization of Various Types of Inter-Frame Video Tampering Using Spatiotemporal Analysis

Author:

Akhtar Naheed1,Hussain Muhammad2ORCID,Habib Zulfiqar1ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Islamabad 45550, Pakistan

2. Department of Computer Science, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

Inter-frame tampering in surveillance videos undermines the integrity of video evidence, potentially influencing law enforcement investigations and court decisions. This type of tampering is the most common tampering method, often imperceptible to the human eye. Until now, various algorithms have been proposed to identify such tampering, based on handcrafted features. Automatic detection, localization, and determine the tampering type, while maintaining accuracy and processing speed, is still a challenge. We propose a novel method for detecting inter-frame tampering by exploiting a 2D convolution neural network (2D-CNN) of spatiotemporal information and fusion for deep automatic feature extraction, employing an autoencoder to significantly reduce the computational overhead by reducing the dimensionality of the feature’s space; analyzing long-range dependencies within video frames using long short-term memory (LSTM) and gated recurrent units (GRU), which helps to detect tampering traces; and finally, adding a fully connected layer (FC), with softmax activation for classification. The structural similarity index measure (SSIM) is utilized to localize tampering. We perform extensive experiments on datasets, comprised of challenging videos with different complexity levels. The results demonstrate that the proposed method can identify and pinpoint tampering regions with more than 90% accuracy, irrespective of video frame rates, video formats, number of tampering frames, and the compression quality factor.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3