Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators

Author:

Zhang Yunxi1ORCID,Kim Soeun2

Affiliation:

1. Department of Data Science, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA

2. Department of Mathematics, Physics, and Statistics, Azusa Pacific University, 901 E Alosta Ave, Azusa, CA 91702, USA

Abstract

Gaussian graphical models have been widely used to measure the association networks for high-dimensional data; however, most existing methods assume fully observed data. In practice, missing values are inevitable in high-dimensional data and should be handled carefully. Under the Bayesian framework, we propose a regression-based approach to estimating sparse precision matrix for high-dimensional incomplete data. The proposed approach nests multiple imputation and precision matrix estimation with horseshoe estimators in a combined Gibbs sampling process. For fast and efficient selection using horseshoe priors, a post-iteration 2-means clustering strategy is employed. Through extensive simulations, we show the predominant selection and estimation performance of our approach compared to several prevalent methods. We further demonstrate the proposed approach to incomplete genetics data compared to alternative methods applied to completed data.

Publisher

MDPI AG

Reference27 articles.

1. Sparse inverse covariance estimation with the graphical lasso;Friedman;Biostatistics,2008

2. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data;Banerjee;J. Mach. Learn Res.,2008

3. High-dimensional graphs and variable selection with the Lasso;Meinshausen;Ann. Stat.,2006

4. Model selection and estimation in the Gaussian graphical model;Yuan;Biometrika,2007

5. The horseshoe estimator for sparse signals;Carvalho;Biometrika,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3