Event-Triggered Adaptive Neural Prescribed Performance Tracking Control for Nonlinear Cyber–Physical Systems against Deception Attacks

Author:

Li Chunyan1,Li Yinguang2ORCID,Zhang Jianhua2ORCID,Li Yang2ORCID

Affiliation:

1. School of Information Technology, Zhejiang Financial College, Hangzhou 310018, China

2. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China

Abstract

This paper investigates the problem of the adaptive neural network tracking control of nonlinear cyber–physical systems (CPSs) subject to unknown deception attacks with prescribed performance. The considered system is under the influence of unknown deception attacks on both actuator and sensor networks, making the research problem challenging. The outstanding contribution of this paper is that a new anti-deception attack-prescribed performance tracking control scheme is proposed through a special coordinate transformation and funnel function, combined with backstepping and bounded estimation methods. The transient performance of the system can be ensured by the prescribed performance control scheme, which makes the indicators of the controlled system, such as settling time and tracking accuracy, able to be pre-assigned offline according to the task needs, and the applicability of the prescribed performance is tested by selecting different values of the settling time (0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, and 3 s). In addition, to save the computational and communication resources of the CPS, this paper uses a finite-time differentiator to approximate the virtual control law differentiation to avoid “complexity explosion” and a switching threshold event triggering mechanism to save the communication resources for data transmission. Finally, the effectiveness of the proposed control strategy is further verified by an electromechanical system simulation example.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3