Breast Cancer Drugs Screening Model Based on Graph Convolutional Network and Ensemble Method

Author:

Li Jia1ORCID,Zhao Yun1,Shi Guoxing1,Tan Xuewen1

Affiliation:

1. School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650031, China

Abstract

Breast cancer is the first cancer incidence and the second cancer mortality in women. Therefore, for the life and health of breast cancer patients, the research and development of breast cancer drugs should be accelerated. In drug development, the search for compounds with good bioactivity, pharmacokinetics, and safety, including Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), has always been a time-consuming and labor-intensive process. In this paper, the relationship between the molecular descriptor and ADMET properties of compounds is studied. Aiming at the problem of composite ADMET attribute classification, a Stacking Algorithm based on Graph Convolutional Network (SA-GCN) was proposed. Firstly, feature selection was performed in the data of molecular descriptors. Then the SA-GCN is developed by integrating the advantages of ten classical classification algorithms. Finally, various performance indicators were used to conduct comparative experiments. Experiments show that the SA-GCN is superior to other classifiers in the classification performance of ADMET, and the classification accuracy is 97.6391%, 98.1450%, 94.4351%, 96.4587%, and 97.9764% compared to other classifiers. Therefore, this method can be well applied to the classification of ADMET properties of compounds and then could provide some help to screen out compounds with good biological activities.

Funder

National Natural Science Foundation of China

Youth Talent Program of the Xingdian Talent Support Plan

Yunnan Provincial Basic Research Program Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3