An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem

Author:

Martin Xabier A.1ORCID,Herrero Rosa2ORCID,Juan Angel A.1ORCID,Panadero Javier3ORCID

Affiliation:

1. Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain

2. TecnoCampus, Universitat Pompeu Fabra, Av. Ernest Lluch, 32, 08302 Mataró, Spain

3. Department of Computer Architecture and Operating Systems, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra, Spain

Abstract

In industries such as aircraft or train manufacturing, large-scale manufacturing companies often manage several complex projects. Each of these projects includes multiple tasks that share a set of limited resources. Typically, these tasks are also subject to time dependencies among them. One frequent goal in these scenarios is to minimize the makespan, or total time required to complete all the tasks within the entire project. Decisions revolve around scheduling these tasks, determining the sequence in which they are processed, and allocating shared resources to optimize efficiency while respecting the time dependencies among tasks. This problem is known in the scientific literature as the Resource-Constrained Project Scheduling Problem (RCPSP). Being an NP-hard problem with time dependencies and resource constraints, several optimization algorithms have already been proposed to tackle the RCPSP. In this paper, a novel discrete-event heuristic is introduced and later extended into an agile biased-randomized algorithm complemented with an adaptive capability to tune the parameters of the algorithm. The results underscore the effectiveness of the algorithm in finding competitive solutions for this problem within short computing times.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3