Strong Interrelation between the Short-Term Variability in the Ionosphere, Upper Mesosphere, and Winter Polar Stratosphere

Author:

Yasyukevich AnnaORCID,Medvedeva Irina,Sivtseva VeraORCID,Chernigovskaya Marina,Ammosov Petr,Gavrilyeva Galina

Abstract

We perform a joint analysis of short-period (up to several hours) variability in parameters of the ionosphere, the mesosphere, and the stratosphere at mid-latitude, subauroral, and high-latitude points for a long time interval. The study is based on the ionospheric total electron content (TEC) measurements and data on the OH rotational temperature at the mesopause height. We reveal similar seasonal variations in the dynamics of the short-term variability level, both in the ionosphere and the mesosphere. Maximum variability is observed during winter months and it exceeds the values in summer period up to 5–6 times. The revealed dynamics has no explicit relation to the levels of geomagnetic and solar activities. We suggest that the instabilities in the high-velocity stratospheric subauroral winter jet stream may be a source of the recorded variability seasonal variations in the ionosphere and the mesosphere. We propose a new index to estimate a short-term variability in the stratosphere. The index is shown to experience similar regular seasonal variations with a maximum during winter months. We show a clear correlation between the mesosphere/ionosphere variability indices values and the stratosphere disturbance index. The correlation is shown to be higher for the mesosphere variability index as compared with that in the ionosphere, and at the high-latitude point located closer to the jet stream. The obtained results indicate a strong interrelation between the short-period variability in the ionosphere, in the upper mesosphere, and in the subauroral stratosphere. The results contribute to elucidating the basic mechanisms for a vertical coupling between different atmospheric layers.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3