EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm

Author:

Alyasseri Zaid Abdi AlkareemORCID,Alomari Osama Ahmad,Papa João P.ORCID,Al-Betar Mohammed Azmi,Abdulkareem Karrar HameedORCID,Mohammed Mazin AbedORCID,Kadry SeifedineORCID,Thinnukool OrawitORCID,Khuwuthyakorn Pattaraporn

Abstract

The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3