Mn3O4@ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green

Author:

Shaikh Benazir,Bhatti Muhammad Ali,Shah Aqeel AhmedORCID,Tahira AneelaORCID,Shah Abdul Karim,Usto Azam,Aftab Umair,Bukhari Sarah I.ORCID,Alshehri SultanORCID,Shah Bukhari Syed Nizam Uddin,Tonezzer MatteoORCID,Vigolo Brigitte,Ibhupoto Zaffar HussainORCID

Abstract

In this study, we synthesized hybrid systems based on manganese oxide@zinc oxide (Mn3O4@ZnO), using sol gel and hydrothermal methods. The hybrid materials exhibited hierarchical morphologies and structures characterized by the hexagonal phase of ZnO and the tetragonal phase of Mn3O4. The hybrid materials were tested for degradation of methylene blue (MB), methyl orange (MO), and malachite green (MG) under ultraviolet (UV) light illumination. The aim of this work was to observe the effect of various amounts of Mn3O4 in enhancing the photocatalytic properties of ZnO-based hybrid structures towards the degradation of MB, MO and MG. The ZnO photocatalyst showed better performance with an increasing amount of Mn3O4, and the degradation efficiency for the hybrid material containing the maximum amount of Mn3O4 was found to be 94.59%, 89.99%, and 97.40% for MB, MO and MG, respectively. The improvement in the performance of hybrid materials can be attributed to the high charge separation rate of electron-hole pairs, the co-catalytic role, the large number of catalytic sites, and the synergy for the production of high quantities of oxidizing radicals. The performance obtained from the various Mn3O4@ZnO hybrid materials suggest that Mn3O4 can be considered an effective co-catalyst for a wide range of photocatalytic materials such as titanium dioxide, tin oxide, and carbon-based materials, in developing practical hybrid photocatalysts for the degradation of dyes and for wastewater treatment.

Funder

Researchers Supporting Project

APC

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3