Abstract
As a promising topological insulator, two-dimensional (2D) bismuth selenide (Bi2Se3) attracts extensive research interest. Controllable surface doping of layered Bi2Se3 becomes a crucial issue for the relevant applications. Here, we propose an efficient method for the chemical thinning and surface doping of layered Bi2Se3, forming Se/Bi2Se3 heterostructures with tunable thickness ranging from a few nanometers to hundreds of nanometers. The thickness can be regulated by varying the reaction time and large-size few-layer Bi2Se3 sheets can be obtained. Different from previous liquid-exfoliation methods that require complex reaction process, in-situ and thickness-controllable exfoliation of large-size layered Bi2Se3 can be realized via the developed method. Additionally, the formation of Se nanomeshes coated on the Bi2Se3 sheets remarkably enhance the intensity of Raman vibration peaks, indicating that this method can be used for surface-enhanced Raman scattering. The proposed chemical thinning and surface-doping method is expected to be extended to other bulk-layered materials for high-efficient preparation of 2D heterostructures.
Funder
National Natural Science Foundation of China
Scientific Researches Foundation of National University of Defense Technology
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献