Role of Solvent Used in Development of Graphene Oxide Coating on AZ31B Magnesium Alloy: Corrosion Behavior and Biocompatibility Analysis

Author:

Maqsood Muhammad FaheemORCID,Raza Mohsin Ali,Rehman Zaeem Ur,Tayyeb AsimaORCID,Makhdoom Muhammad AtifORCID,Ghafoor Faisal,Latif UmarORCID,Khan Muhammad FarooqORCID

Abstract

Clinical applications of bio-absorbable magnesium (Mg) and its alloys can be enhanced by increasing their corrosion resistance, using surface modification and functionality. In this study, we synthesized graphene oxide (GO) through improved Hummers’ method and deposited it on biodegradable AZ31B Mg alloy for further characterization. Different suspensions of GO were prepared in various solvents, like deionized water, ethanol, and acetone by ultra-sonication. Electrophoretic deposition (EPD) was used to develop GO coatings on AZ31B Mg using different GO suspensions. Effect of various solvents on corrosion behavior, as well as in vitro biocompatibility, was studied. The optimized EPD parameters were 3 volts and 90 s for coating. Different characterization techniques were used to study GO and prepared coatings. Atomic force microscopy found that the average thickness of GO was ~1 nm. Electrochemical behavior of coatings was studied through electrochemical impedance spectroscopy (EIS) and Tafel analysis in Ringer’s lactate solution. Tafel analysis revealed that GO coatings deposited by GO water suspension increased corrosion protection efficiency of AZ31B Mg alloy by ~94%. After 72 h incubation in MC3T3-E1 osteoblast cells extract, in vitro analysis was performed to determine the cell viability and biocompatibility of the GO- coated and bare Mg samples. GO coatings deposited by GO water suspension demonstrated ~2× cell viability, as well as nontoxicity and better biocompatibility compared to the bare and other GO-coated Mg samples.

Funder

University of the Punjab and Higher Education Commission (HEC) of Pakistan

National Research Foundation of Korea (NRF), ICT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3