Aggregation, Sedimentation and Dissolution of Cu(OH)2-Nanorods-Based Nanopesticide in Soil Solutions

Author:

Xu Zhenlan,Tang Qing,Hong Aimei,Li LingxiangyuORCID

Abstract

Along with the development of nanotechnology, nanomaterials have been gradually applied to agriculture in recent years, such as Cu(OH)2-nanorods-based nanopesticide, an antibacterial agrochemical with a high efficacy. Nevertheless, knowledge about physical stability of Cu(OH)2 nanopesticide in soil solutions is currently scarce, restricting comprehensive understanding of the fate and risk of Cu(OH)2 nanopesticide in the soil environment. Herein we investigated aggregation, sedimentation and dissolution of Cu(OH)2 nanopesticide in soil solutions extracted from three different soil samples, wherein commercial Cu(OH)2 nanopesticide formulation (NPF), as well as its active ingredient (AI) and laboratory-prepared Cu(OH)2 nanorods (NR) with similar morphology as AI, were used as model Cu(OH)2 nanopesticides. We found that NPF compared to AI showed less extents of aggregation in ultrapure water due to the presence of dispersing agent in NPF. Yet, moderated aggregation and sedimentation were observed for Cu(OH)2 nanopesticide irrespective of NPF, AI or NR when soil solutions were used instead of ultrapure water. The sedimentation rate constants of AI and NPF were 0.023 min−1 and 0.010 min−1 in the ultrapure water, whereas the rate constants of 0.003–0.021 min−1 and 0.002–0.007 min−1 were observed for AI and NPF in soil solutions, respectively. Besides aggregation and sedimentation, dissolution of Cu(OH)2 nanopesticide in soil solutions was highly dependent on soil type, wherein pH and organic matter played important roles in dissolution. Although the final concentrations of dissolved copper (1.08–1.37 mg/L) were comparable among different soil solutions incubating 48 mg/L of AI, NPF or NR for 96 h, a gradual increase followed by an equilibrium was only observed in the soil solution from acidic soil (pH 5.16) with the low content of organic matter (1.20 g/kg). This work would shed light on the fate of Cu(OH)2 nanopesticide in the soil environment, which is necessary for risk assessment of the nanomaterials-based agrochemical.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3