Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations

Author:

Zhao XilaiORCID,Jiao Yanan,Liang Jiangang,Lou Jing,Zhang Jing,Lv Jiawen,Du Xiaohui,Shen Lian,Zheng BinORCID,Cai Tong

Abstract

Terahertz (THz) meta-devices are considered to be a promising framework for constructing integrated photonic circuitry, which is significant for processing the upsurge of data brought about by next-generation telecommunications. However, present active metasurfaces are typically restricted by a single external driving field, a single modulated frequency, fixed switching speed, and deficiency in logical operation functions which prevents devices from further practical applications. Here, to overcome these limitations, we propose a hybrid THz metasurface consisting of vanadium dioxide (VO2) and germanium (Ge) that enables electrical and optical tuning methods individually or simultaneously and theoretically investigate its performance. Each of the two materials is arranged in the meta-atom to dominate the resonance strength of toroidal or magnetic dipoles. Controlled by either or both of the external excitations, the device can switch on or off at four different frequencies, possessing two temporal degrees of freedom in terms of manipulation when considering the nonvolatility of VO2 and ultrafast photogenerated carriers of Ge. Furthermore, the “AND” and “OR” logic operations are respectively achieved at two adjacent frequency bands by weighing normalized transmission amplitude. This work may provide an auspicious paradigm of THz components, such as dynamic filters, multiband switches, and logical modulators, potentially promoting the design and implementation of multifunctional electro-optical devices in future THz computing and communication.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3