Facile and Rapid Electrochemical Conversion of Ni into Ni(OH)2 Thin Film as the Catalyst for Direct Growth of Carbon Nanotubes on Ni Foam for Supercapacitors

Author:

Kao Sheng-Hung,Anuratha Krishnan Shanmugam,Wei Sung-Yen,Lin Jeng-YuORCID,Hsieh Chien-Kuo

Abstract

In this paper, a facile and rapid aqueous-based electrochemical technique was used for the phase conversion of Ni into Ni(OH)2 thin film. The Ni(OH)2 thin film was directly converted and coated onto the network surface of Ni foam (NF) via the self-hydroxylation process under alkaline conditions using a simple cyclic voltammetry (CV) strategy. The as-formed and coated Ni(OH)2 thin film on the NF was used as the catalyst layer for the direct growth of carbon nanotubes (CNTs). The self-converted Ni(OH)2 thin film is a good catalytic layer for the growth of CNTs due to the fact that the OH− of the Ni(OH)2 can be reduced to H2O to promote the growth of CNTs during the CVD process, and therefore enabling the dense and uniform CNTs growth on the NF substrate. This binder-free CNTs/NF electrode displayed outstanding behavior as an electric double-layer capacitor (EDLC) due to the large surface area of the CNTs, showing excellent specific capacitance values of 737.4 mF cm−2 in the three-electrode configuration and 319.1 mF cm−2 in the two-electrode configuration, at the current density of 1 mA cm−2 in a 6 M KOH electrolyte. The CNTs/NF electrode also displayed good cycling stability, with a capacitance retention of 96.41% after 10,000 cycles, and this the excellent cycling performance can be attributed to the stable structure of the direct growth of CNTs with a strong attachment to the NF current collector, ensuring a good mechanical and electrical connection between the NF collector and the CNTs.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3