Abstract
The surfactant modification of catalyst morphology is considered as an effective method to improve photocatalytic performance. In this work, the visible-light-driven composite photocatalyst was obtained by growing CdS nanoparticles in the cubic crystal structure of CdCO3, which, after surfactant modification, led to the formation of CdCO3 elliptical spheres. This reasonable composite-structure-modification design effectively increased the specific surface area, fully exposing the catalytic-activity check point. Cd2+ from CdCO3 can enter the CdS crystal structure to generate lattice distortion and form hole traps, which productively promoted the separation and transfer of CdS photogenerated electron-hole pairs. The prepared 5-CdS/CdCO3@SDS exhibited excellent Cr(VI) photocatalytic activity with a reduction efficiency of 86.9% within 30 min, and the reduction rate was 0.0675 min−1, which was 15.57 and 14.46 times that of CdS and CdCO3, respectively. Finally, the main active substances during the reduction process, the photogenerated charge transfer pathways related to heterojunctions and the catalytic mechanism were proposed and analyzed.
Funder
Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization
Research Foundation of Guangxi Key Laboratory of Information Materials
National Natural Science Foundation of China
Guangxi Natural Science Foundation
Innovation Project of GUET Graduate Education
Guangxi Scholarship Fund of GED
Innovation and Entrepreneurship Training Program for College Students
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献