Fly Ash-Incorporated Polystyrene Nanofiber Membrane as a Fire-Retardant Material: Valorization of Discarded Materials

Author:

Park MiraORCID,Kuk Yun-Su,Kwon Oh Hoon,Acharya Jiwan,Ojha Gunendra PrasadORCID,Ko Jae-Kyoung,Kong Ha-Sung,Pant BishweshwarORCID

Abstract

Reusing or recycling waste into new useful materials is essential for environmental protection. Herein, we used discarded polystyrene (PS) and fly-ash (FA) particles and a fabricated fly-ash incorporated polystyrene fiber (FA/PS fiber) composite. The electrospinning process produced continuous PS fibers with a good distribution of FA particles. The prepared nanofibers were characterized by state-of-the-art techniques. The performances of the composite nanofibers were tested for fire-retardant applications. We observed that the incorporation of FA particles into the PS fibers led to an improvement in the performance of the composite as compared to the pristine PS fibers. This study showed an important strategy in using waste materials to produce functional nanofibers through an economical procedure. We believe that the strategy presented in this paper can be extended to other waste materials for obtaining nanofiber membranes for various environmental applications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3