A Remote Two-Point Magnetic Localization Method Based on SQUID Magnetometers and Magnetic Gradient Tensor Invariants

Author:

Zhang Yingzi1ORCID,Liu Gaigai1ORCID,Wang Chen1,Qiu Longqing2,Wang Hongliang1,Liu Wenyi1

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China

2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

Abstract

In practical application, existing two-point magnetic gradient tensor (MGT) localization methods have a maximum detection distance of only 2.5 m, and the magnetic moment vectors of measured targets are all unknown. In order to realize remote, real-time localization, a new two-point magnetic localization method based on self-developed, ultra-sensitive superconducting quantum interference device (SQUID) magnetometers and MGT invariants is proposed. Both the magnetic moment vector and the relative position vector can be directly calculated based on the linear positioning model, and a quasi-Newton optimization algorithm is adopted to further improve the interference suppression capability. The simulation results show that the detection distance of the proposed method can reach 500 m when the superconducting MGT measurement system is used. Compared with Nara’s single-point tensor (NSPT) method and Xu’s two-point tensor (XTPT) method, the proposed method produces the smallest relative localization error (i.e., significantly less than 1% in the non-positioning blind area) without sacrificing real-time characteristics. The causes of and solutions to the positioning blind area are also analyzed. The equivalent experiments, which were conducted with a detection distance of 10 m, validate the effectiveness of the localization method, yielding a minimum relative localization error of 4.5229%.

Funder

Foundation of State Key Laboratory of Dynamic Measurement Technology

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3