Affiliation:
1. School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
This study proposes a compact, low-profile, four-port dual-band monopole multiple-input-multiple-output (MIMO) antenna array for unmanned aerial vehicle (UAV) communication systems. Each monopole antenna of the array features a modified T-shaped radiator configuration and is printed on a Rogers RT5880 substrate with compact dimensions of 134.96 mm × 134.96 mm × 0.8 mm. A four-element square MIMO configuration with sequential 0°, 90°, 180°, and 270° rotations was integrated smoothly into the UAV body. A prototype of the MIMO array was fabricated and experimentally evaluated, with measured results showing a close correlation to simulated results. The proposed dual-band monopole antenna demonstrated one of the widest impedance bandwidths of 46.15% at 2.4 GHz (2.04 to 3.25 GHz) IEEE 802.11b and 31.85% at 5.8 GHz (5.37 to 7.38 GHz) IEEE 802.11a on a thin 0.0064 λo substrate while achieving high transmission efficiency. The isolation of the proposed four-port MIMO design was measured at 23 dB at 2.4 GHz and 19 dB at 5.8 GHz. The MIMO array’s total efficiency of each monopole antenna was measured at 96% at 2.4 GHz and 89% at 5.8 GHz. The design has measured diversity parameters such as an ECC below 0.01 and a DG of approximately 10. Based on these results, the proposed design suits the UAV communication system.
Funder
Technology Innovation Guidance Program of Shaanxi Province
Fundamental Research Funds for the Central Universities of the Ministry of Education of China