Georeferencing of Multi-Channel GPR—Accuracy and Efficiency of Mapping of Underground Utility Networks

Author:

Gabryś Marta,Ortyl Łukasz

Abstract

Due to the capabilities of non-destructive testing of inaccessible objects, GPR (Ground Penetrating Radar) is used in geology, archeology, forensics and increasingly also in engineering tasks. The wide range of applications of the GPR method has been provided by the use of advanced technological solutions by equipment manufacturers, including multi-channel units. The acquisition of data along several profiles simultaneously allows time to be saved and quasi-continuous information to be collected about the subsurface situation. One of the most important aspects of data acquisition systems, including GPR, is the appropriate methodology and accuracy of the geoposition. This publication aims to discuss the results of GPR measurements carried out using the multi-channel Leica Stream C GPR (IDS GeoRadar Srl, Pisa, Italy). The significant results of the test measurement were presented the idea of which was to determine the achievable accuracy depending on the georeferencing method using a GNSS (Global Navigation Satellite System) receiver, also supported by time synchronization PPS (Pulse Per Second) and a total station. Methodology optimization was also an important aspect of the discussed issue, i.e., the effect of dynamic changes in motion trajectory on the positioning accuracy of echograms and their vectorization products was also examined. The standard algorithms developed for the dedicated software were used for post-processing of the coordinates and filtration of echograms, while the vectorization was done manually. The obtained results provided the basis for the confrontation of the material collected in urban conditions with the available cartographic data in terms of the possibility of verifying the actual location of underground utilities. The urban character of the area limited the possibility of the movement of Leica Stream C due to the large size of the instrument, however, it created the opportunity for additional analyses, including the accuracy of different location variants around high-rise buildings or the agreement of the amplitude distribution at the intersection of perpendicular profiles.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference27 articles.

1. Identification of concrete voids in an untypical railway bridge pillar by Ground Penetrating Radar Method;Owerko;Meas. Autom. Monit.,2015

2. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

3. An overview of ground-penetrating radar signal processing techniques for road inspections

4. Ground-penetrating radar for the evaluation and monitoring of transport infrastructures;Pajewski,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3