Detection of Italian Ryegrass in Wheat and Prediction of Competitive Interactions Using Remote-Sensing and Machine-Learning Techniques

Author:

Sapkota Bishwa,Singh Vijay,Neely Clark,Rajan Nithya,Bagavathiannan MuthukumarORCID

Abstract

Italian ryegrass (Lolium perenne ssp. multiflorum (Lam) Husnot) is a troublesome weed species in wheat (Triticum aestivum) production in the United States, severely affecting grain yields. Spatial mapping of ryegrass infestation in wheat fields and early prediction of its impact on yield can assist management decision making. In this study, unmanned aerial systems (UAS)-based red, green and blue (RGB) imageries acquired at an early wheat growth stage in two different experimental sites were used for developing predictive models. Deep neural networks (DNNs) coupled with an extensive feature selection method were used to detect ryegrass in wheat and estimate ryegrass canopy coverage. Predictive models were developed by regressing early-season ryegrass canopy coverage (%) with end-of-season (at wheat maturity) biomass and seed yield of ryegrass, as well as biomass and grain yield reduction (%) of wheat. Italian ryegrass was detected with high accuracy (precision = 95.44 ± 4.27%, recall = 95.48 ± 5.05%, F-score = 95.56 ± 4.11%) using the best model which included four features: hue, saturation, excess green index, and visible atmospheric resistant index. End-of-season ryegrass biomass was predicted with high accuracy (R2 = 0.87), whereas the other variables had moderate to high accuracy levels (R2 values of 0.74 for ryegrass seed yield, 0.73 for wheat biomass reduction, and 0.69 for wheat grain yield reduction). The methodology demonstrated in the current study shows great potential for mapping and quantifying ryegrass infestation and predicting its competitive response in wheat, allowing for timely management decisions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3