Abstract
Commonly, when studies deal with the effects of climate change on biodiversity, mean value is used more than other parameters. However, climate change also leads to greater temperature variability, and many papers have demonstrated its importance in the implementation of biodiversity response strategies. We studied the spatio-temporal variability of activity time and persistence index, calculated from operative temperatures measured at three sites over three years, for a mountain endemic species. Temperatures were recorded with biomimetic loggers, an original remote sensing technology, which has the same advantages as these tools but is suitable for recording biological organisms data. Among the 42 tests conducted, 71% were significant for spatial variability and 28% for temporal variability. The differences in daily activity times and in persistence indices demonstrated the effects of the micro-habitat, habitat, slope, altitude, hydrography, and year. These observations have highlighted the great variability existence in the environmental temperatures experienced by lizard populations. Thus, our study underlines the importance to implement multi-year and multi-site studies to quantify the variability and produce more representative results. These studies can be facilitated by the use of biomimetic loggers, for which a user guide is provided in the last part of this paper.
Subject
General Earth and Planetary Sciences