Abstract
As marine transportation has increased in coastal regions, maritime accidents associated with vessels have steadily increased. Remotely sensed satellite or airborne images can aid rapid vessel monitoring over wide areas at high resolutions. In this study, airborne hyperspectral experiments were performed to detect marine vessels mainly including fishing boat and yacht by applying pixel-based mixture techniques and to estimate the size of the vessels through an objective ellipse fitting method. Various spectral libraries of marine objects and seawaters were constructed through in-situ experiments for spectral analysis of the internal structures of vessels. The hyperspectral images were dimensionally reduced through principal component analysis. Several hyperspectral mixture algorithms, such as N-FINDR, pixel purity index (PPI), independent component analysis (ICA), and vertex component analysis (VCA), were used for the detection of vessels. The N-FINDR and VCA techniques presented a total of 14 vessels, the ICA technique detected seven vessels, and the PPI technique detected two vessels. The pixel-based probability of detection (POD) and false alarm ratio (FAR) for all 14 vessels were 96.40% and 4.30%, respectively. The sizes of the vessels were estimated by extracting the boundaries of the vessels through a two-dimensional gradient and applying the ellipse fitting method. Compared with the digital mapping camera (DMC) images with resolutions of 0.10 m, the root-mean-square errors of the length and width of the vessels were approximately 1.19 m and 0.81 m, respectively. The application of spectral mixing methods provided a high probability of detecting the objects, as well as the overall structures of the decks of the vessels.
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献