Studying Land Cover Changes in a Malaria-Endemic Cambodian District: Considerations and Constraints

Author:

Pepey Anaïs,Souris MarcORCID,Vantaux AmélieORCID,Morand SergeORCID,Lek Dysoley,Mueller Ivo,Witkowski Benoit,Herbreteau VincentORCID

Abstract

Malaria control is an evolving public health concern, especially in times of resistance to insecticides and to antimalarial drugs, as well as changing environmental conditions that are influencing its epidemiology. Most literature demonstrates an increased risk of malaria transmission in areas of active deforestation, but knowledge about the link between land cover evolution and malaria risk is still limited in some parts of the world. In this study, we discuss different methods used for analysing the interaction between deforestation and malaria, then highlight the constraints that can arise in areas where data is lacking. For instance, there is a gap in knowledge in Cambodia about components of transmission, notably missing detailed vector ecology or epidemiology data, in addition to incomplete prevalence data over time. Still, we illustrate the situation by investigating the evolution of land cover and the progression of deforestation within a malaria-endemic area of Cambodia. To do so, we investigated the area by processing high-resolution satellite imagery from 2018 (1.5 m in panchromatic mode and 6 m in multispectral mode) and produced a land use/land cover map, to complete and homogenise existing data from 1988 and from 1998 to 2008 (land use/land cover from high-resolution satellite imagery). From these classifications, we calculated different landscapes metrics to quantify evolution of deforestation, forest fragmentation and landscape diversity. Over the 30-year period, we observed that deforestation keeps expanding, as diversity and fragmentation indices globally increase. Based on these results and the available literature, we question the mechanisms that could be influencing the relationship between land cover and malaria incidence and suggest further analyses to help elucidate how deforestation can affect malaria dynamics.

Funder

National Institutes of Health

Institut Pasteur

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3