Abstract
Rapid invasion of Spartina alterniflora in coastal wetlands throughout the world has attracted much attention. Some field and imagery evidence has shown that the landward invasion of S. alterniflora follows the tidal channel networks as the main pathway. However, the specific patterns and processes of its invasion in salt marshes in relation to tidal channel networks are still unclear. Based on yearly satellite images from 2010 to 2018, we studied the patterning relationship between tidal channel networks and the invasion of S. alterniflora at the south bank of the Yellow River Estuary (SBYRE). At the landscape (watershed and cross-watershed) scale, we analyzed the correlation between proxies of tidal channel network drainage efficiency (unchanneled flow lengths (UFL), overmarsh path length (OPL), and tidal channels density (TCD)) and spatial distribution of S. alterniflora. At the local (channel) scale, we examined the area and number of patches of S. alterniflora in different distance buffer zones outward from the tidal channels. Our results showed that, overall, the invasion of S. alterniflora had a strong association with tidal channel networks. Watershed with higher drainage efficiency (smaller OPL) attained larger S. alterniflora area, and higher-order (third-order and above) channels tended to be the main pathway of S. alterniflora invasion. At the local scale, the total area of S. alterniflora in each distance buffer zones increased with distance within 15 m from the tidal channels, whereas the number of patches decreased with distance as expansion stabilized. Overall, the S. alterniflora area within 30 m from the tidal channels remained approximately 14% of its entire distribution throughout the invasion. The results implicated that early control of S. alterniflora invasion should pay close attention to higher-order tidal channels as the main pathway
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献