Responses of Soil Microbial Diversity to Forest Management Practices after Pine Wilt Disease Infection

Author:

Guo Jing1ORCID,Gong Xiaofei2,Yu Shuisheng2,Wei Boliang13ORCID,Chu Liying1,Liu Jinliang4,He Xiaoyong5,Yu Mingjian1ORCID

Affiliation:

1. College of Life Sciences, Zhejiang University, Hangzhou 310058, China

2. Ecological Forestry Development Center of Suichang County, Lishui 323300, China

3. Zhejiang Wuyanling National Nature Reserve Management Bureau, Wenzhou 325500, China

4. College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

5. Lishui Forestry Technology Promotion Station, Lishui 323000, China

Abstract

Pine wilt disease (PWD) caused by the pine wood nematode (Bursaphelenchus xylophilus) is a serious threat to coniferous forests worldwide. However, little is known about how soil microbial diversity responds to PWD and associated management practices. We investigated the community composition and diversity of bacteria and fungi in bulk and rhizosphere soil of Masson pine (Pinus massoniana Lamb.) forests following 0, 1, and 5 year PWD, with the dead pine in a certain plot being either managed (logged and removed from the plot) or unmanaged (maintained as standing dead wood). Both bacterial and fungal alpha diversity decrease after 5 year PWD and logging, with response degree being different between site locations. Alpha diversity of rhizosphere fungi, rather than bacteria, significantly decreases with the disease and logging. We observe an increase in the relative amount of bacterial functional groups involved in carbohydrate and amino acid metabolism after PWD infection and logging practice. With the disease infection, the relative abundance of ectomycorrhizal fungi decreases, while the relative abundance of saprotrophic fungi increases. Compared with logging treatment, unmanaged practice had a weaker effect on soil microbial communities. Our findings provide new insights into the short-term responses of soil microbial diversity to management practices after PWD infection.

Funder

International Collaborative Project of National Key R & D Plan

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

National Natural Science Foundation of China

Exploration Project of Zhejiang Provincial Natural Science Foundation

Scientific Research Project of Wenzhou

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3