Photovoltaic Module Fault Detection Based on a Convolutional Neural Network

Author:

Lu Shiue-DerORCID,Wang Meng-Hui,Wei Shao-En,Liu Hwa-Dong,Wu Chia-Chun

Abstract

With the rapid development of solar energy, the photovoltaic (PV) module fault detection plays an important role in knowing how to enhance the reliability of the solar photovoltaic system and knowing the fault type when a system problem occurs. Therefore, this paper proposed the hybrid algorithm of chaos synchronization detection method (CSDM) with convolutional neural network (CNN) for studying PV module fault detection. Four common PV module states were discussed, including the normal PV module, module breakage, module contact defectiveness and module bypass diode failure. First of all, the defects in 16 pieces of 20W monocrystalline silicon PV modules were preprocessed, and there were four pieces of each fault state. When the signal generator delivered high frequency voltage to the PV module, the original signal was measured and captured by the NI PXI-5105 high-speed data acquisition system (DAS) and was calculated by CSDM, to establish the chaos dynamic error map as the image feature of fault diagnosis. Finally, the CNN was employed for diagnosing the fault state of the PV module. The findings show that after entering 400 random fault data (100 data for each fault) into the proposed method for recognition, the recognition accuracy rate of the proposed method was as high as 99.5%, which is better than the traditional ENN algorithm that had a recognition rate of 86.75%. In addition, the advantage of the proposed algorithm is that the mass original measured data can be reduced by CSDM, the subtle changes in the output signals are captured effectively and displayed in images, and the PV module fault state is accurately recognized by CNN.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3