Temporal–Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh–Taylor Mixing Zone

Author:

Guo Wenjing,Guo Xiurong,Wei YikunORCID,Zhang Yan

Abstract

In this work, the temporal–spatial evolution of kinetic and thermal energy dissipation rates in three-dimensional (3D) turbulent Rayleigh–Taylor (RT) mixing are investigated numerically by the lattice Boltzmann method. The temperature fields, kinetic and thermal energy dissipation rates with temporal–spatial evolution, the probability density functions, the fractal dimension of mixing interface, spatial scaling law of structure function for the kinetic and the thermal energy dissipation rates in 3D space are analysed in detail to provide an improved physical understanding of the temporal–spatial dissipation-rate characteristic in the 3D turbulent Rayleigh–Taylor mixing zone. Our numerical results indicate that the kinetic and thermal energy dissipation rates are concentrated in areas with large gradients of velocity and temperature with temporal evolution, respectively, which is consistent with the theoretical assumption. However, small scale thermal plumes initially at the section of half vertical height increasingly develop large scale plumes with time evolution. The probability density function tail of thermal energy dissipation gradually rises and approaches the stretched exponent function with temporal evolution. The slope of fractal dimension increases at an early time, however, the fractal dimension for the fluid interfaces is 2.4 at times t/τ ≥ 2, which demonstrates the self-similarity of the turbulent RT mixing zone in 3D space. It is further demonstrated that the second, fourth and sixth-order structure functions for velocity and temperature structure functions have a linear scaling within the inertial range.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3