Abstract
Sensor fault detection of wind turbines plays an important role in improving the reliability and stable operation of turbines. The supervisory control and data acquisition (SCADA) system of a wind turbine provides promising insights into sensor fault detection due to the accessibility of the data and the abundance of sensor information. However, SCADA data are essentially multivariate time series with inherent spatio-temporal correlation characteristics, which has not been well considered in the existing wind turbine fault detection research. This paper proposes a novel classification-based fault detection method for wind turbine sensors. To better capture the spatio-temporal characteristics hidden in SCADA data, a multiscale spatio-temporal convolutional deep belief network (MSTCDBN) was developed to perform feature learning and classification to fulfill the sensor fault detection. A major superiority of the proposed method is that it can not only learn the spatial correlation information between several different variables but also capture the temporal characteristics of each variable. Furthermore, this method with multiscale learning capability can excavate interactive characteristics between variables at different scales of filters. A generic wind turbine benchmark model was used to evaluate the proposed approach. The comparative results demonstrate that the proposed method can significantly enhance the fault detection performance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献