Effect of Electrochemical Pre-Oxidation for Mitigating Ultrafiltration Membrane Fouling Caused by Extracellular Organic Matter

Author:

Xu Shunkai12,Li Guangchao1ORCID,Zhou Shiqing1,Shi Zhou1,Liu Bin1ORCID

Affiliation:

1. Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China

2. Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100081, China

Abstract

Algal extracellular organic matter (EOM) will cause grievous membrane fouling during the filtration of algae-laden water; hence, boron-doped diamond (BDD) anodizing was selected as the pretreatment process before the ultrafiltration, and the EOM fouling mitigation mechanism and the purification efficiency were systematically investigated. The results showed that BDD oxidation could significantly alleviate the decline of membrane flux and reduce membrane fouling, and the effect was more notable with an increase in oxidation time. Less than 10% flux loss happened when oxidation duration was 100 min. The dominant fouling model was gradually replaced by standard blocking. BDD anodizing preferentially oxidizes hydrophobic organic matter and significantly reduces the DOC concentration in EOM. The effluent DOC was reduced to less than 1 mg/L when 100 min of BDD anodizing was applied. After the pre-oxidation of BDD, the zeta potential and interfacial free energy, including the cohesive and adhesive free energy, were all constantly increasing, which implied that the pollutants would agglomerate and deposit, and the repulsion between foulants and the ultrafiltration membrane was augmented with the extensive oxidation time. This further confirms the control of BDD on membrane fouling. In addition, the BDD anodizing coupled ultrafiltration process also showed excellent performance in removing disinfection by-product precursors.

Funder

National Natural Science Foundation Youth Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3