Towards Portable MEMS Oscillators for Sensing Nanoparticles

Author:

Chellasivalingam Malar,Zielinski Arthur T.,Whitney Thomas S.,Boies Adam M.,Seshia Ashwin A.

Abstract

This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.

Funder

British Council

BP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanoscale mass measurement based on suspended graphene;Journal of Physics D: Applied Physics;2023-06-30

2. Digitally Programmable CMOS Feedback ASIC for Network of Coupled Electromechanical Oscillators;2023 IEEE International Symposium on Circuits and Systems (ISCAS);2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3