A Lightweight Multi-Branch Context Network for Unsupervised Underwater Image Restoration

Author:

Wang Rong1ORCID,Zhang Yonghui1ORCID,Zhang Yulu1ORCID

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

Abstract

Underwater images commonly experience degradation caused by light absorption and scattering in water. Developing lightweight and efficient neural networks to restore degraded images is challenging because of the difficulty in obtaining high-quality paired images and the delicate trade-off between model performance and computational demands. To provide a lightweight and efficient solution for restoring images in terms of color, structure, texture details, etc., enabling the underwater image restoration task to be applied in real-world scenes, we propose an unsupervised lightweight multi-branch context network. Specifically, we design two lightweight multi-branch context subnetworks that enable multiple receptive field feature extraction and long-range dependency modeling to estimate scene radiance and transmission maps. Gaussian blur is adopted to approximate the global background light on the twice-downsampled degraded image. We design a comprehensive loss function that incorporates multiple components, including self-supervised consistency loss and reconstruction loss, to train the network using degraded images in an unsupervised learning manner. Experiments on several underwater image datasets demonstrate that our approach realizes good performance with very few model parameters (0.12 M), and is even comparable to state-of-the-art methods (up to 149 M) in color correction and contrast restoration.

Funder

Key Research and Development Project of Hainan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3