On Improving 5G Internet of Radio Light Security Based on LED Fingerprint Identification Method

Author:

Shi Dayu,Zhang XunORCID,Shi Lina,Vladimirescu Andrei,Mazurczyk Wojciech,Cabaj KrzysztofORCID,Meunier Benjamin,Ali Kareem,Cosmas John,Zhang YueORCID

Abstract

In this paper, a novel device identification method is proposed to improve the security of Visible Light Communication (VLC) in 5G networks. This method extracts the fingerprints of Light-Emitting Diodes (LEDs) to identify the devices accessing the 5G network. The extraction and identification mechanisms have been investigated from the theoretical perspective as well as verified experimentally. Moreover, a demonstration in a practical indoor VLC-based 5G network has been carried out to evaluate the feasibility and accuracy of this approach. The fingerprints of four identical white LEDs were extracted successfully from the received 5G NR (New Radio) signals. To perform identification, four types of machine-learning-based classifiers were employed and the resulting accuracy was up to 97.1%.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3