Significance of Thermal Phenomena and Mechanisms of Heat Transfer through the Dynamics of Second-Grade Micropolar Nanofluids

Author:

Awan Aziz UllahORCID,Ahammad N. Ameer,Ali BaghORCID,Tag-ElDin ElSayed M.ORCID,Guedri KamelORCID,Gamaoun Fehmi

Abstract

Due to their unique microstructures, micropolar fluids have attracted enormous attention due to their potential for industrial application, including convective heat and mass transfer polymer production and the rigid and random cooling of particles for metallic sheets. In this context, a micropolar second-grade fluid flow over a vertical Riga plate is investigated for hidden microstructures. The novelty of the flow model allows us to explore the significance of Brownian motion and thermophoresis on the dynamics of non-Newtonian fluid. A mathematical model is developed under the flow assumptions for micropolar second-grade fluid over a vertical Riga plate of PDEs, reducing them into ODEs by invoking similarity techniques. The acquired system of non-linear ODEs is elucidated numerically using bvp4c methodology. Furthermore, comparative tables are generated to confirm the bvp4c technique, ensuring the accuracy of our numerical approach. This rheological study of micropolar second-grade fluid suggests that temperature distribution increases due to variations in the micropolar parameter (K), Eckert number (Ec), and the thermophoresis parameter (Nt), and the concentration distribution (Φ(η)) keeps rising against the boosting values of Brownian motion (Nb); however, the inverse trend is noted against thermophoresis (Nt).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3