Abstract
We present the development of a 6 × 6 piezoelectric array sensor for measuring elasticity and force. The proposed sensor employs an impedance measurement technique, sensing the acoustic load impedance of a target by measuring the electrical impedance shift of face-shear mode PMN–PT (lead magnesium niobate–lead titanate) single crystal elements. Among various modes of PMN–PT single crystals, the face-shear mode was selected due to its especially high sensitivity to acoustic loads. To verify the elasticity sensing performance, gelatin samples with different elastic moduli were prepared and tested. For the force measurement test, different magnitudes of force were loaded to the sensing layer whose acoustic impedance was varied with applied forces. From the experimental results, the fabricated sensor showed an elastic stiffness sensitivity of 23.52 Ohm/MPa with a resolution of 4.25 kPa and contact force sensitivity of 19.27 Ohm/N with a resolution of 5.19 mN. In addition, the mapping experiment of elasticity and force using the sensor array was successfully demonstrated.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献