Abstract
Accurate base station traffic data in a public place with large changes in the amount of people could help predict the occurrence of network congestion, which would allow us to effectively allocate network resources. This is of great significance for festival network support, routine maintenance, and resource scheduling. However, there are a few related reports on base station traffic prediction, especially base station traffic prediction in public scenes with fluctuations in people flow. This study proposes a public scene traffic data prediction method, which is based on a v Support Vector Regression (vSVR) algorithm. To achieve optimal prediction of traffic, a symbiotic organisms search (SOS) was adopted to optimize the vSVR parameters. Meanwhile, the optimal input time step was determined through a large number of experiments. Experimental data was obtained at the base station of Huainan Wanda Plaza, in the Anhui province of China, for three months, with the granularity being one hour. To verify the predictive performance of vSVR, the classic regression algorithm extreme learning machine (ELM) and variational Bayesian Linear Regression (vBLR) were used. Their optimal prediction results were compared with vSVR predictions. Experimental results show that the prediction results from SOS-vSVR were the best. Outcomes of this study could provide guidance for preventing network congestion and improving the user experience.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献