Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations

Author:

Liu Panpan,Jing Haitao,Zhang Dapeng,Tang Jingying,Liu Qi,Luan Wenfei

Abstract

Seling Co Lake, located on the Qinghai-Tibet Plateau, has been expanding rapidly since the 1980s and, in 2008, surpassed Namtso Lake to become the largest lake in Tibet. Additionally, this rapid expansion has significantly impacted the ecological environment, and human activities surround the lake. Thus, it is of great importance to reveal the expansion pattern of Seling Co Lake for a long time-series. Previous studies always contained errors when exploring this subject due to the limitations associated with the quality of remote sensing images. To overcome the existing deficiency, a method based on the SRTM1 DEM and a water frequency Landsat-series dataset is developed to reconstruct the complete inundation area of Seling Co Lake from 1987 to 2021 while taking full advantage of the relationship between the water frequency and terrain. The results show that the water frequency reconstruction model proposed in this study has a significant optimization effect on the restoration of the permanent and seasonal water areas of Seling Co Lake. In particular, the proposed method can effectively improve the underestimated water-frequency pixel values of the seasonal waters located on the southern and northern shores of Seling Co Lake. The water-inundation area of Seling Co Lake showed an overall increasing trend with a rate of 26.02 km2∙year−1 (p < 0.01), and this expansion trend was mainly concentrated in the southern and northern parts of the lake. This study cannot only provide an efficient and feasible remote sensing means of reconstructing the water-inundation area for lakes in complex terrain according to topographic conditions but also greatly refines our understanding of the annual variations in the water-inundation area of Lake Seling Co.

Funder

National Natural Science Foundation of China

Key scientific research Project of Henan higher education institutions

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference53 articles.

1. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau;Natl. Remote Sens. Bull.,2022

2. China’s Inland Water Dynamics: The Significance of Water Body Types;Proc. Natl. Acad. Sci. USA,2020

3. Human Alteration of Global Surface Water Storage Variability;Nature,2021

4. Lake Heatwaves under Climate Change;Nature,2021

5. Progress in remote sensing study on lake hydrological;J. Lake Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3