High-Precision ADC Spectrum Testing under Non-Coherent Sampling Conditions

Author:

Peng Xiaofei,Li Jie,Zhang Debiao,Hu Chenjun,Sun Ning,Jiang Jie

Abstract

Realizing coherent sampling is one of the major bottlenecks in high-precision ADC spectrum testing. In spectrum analysis, if coherent sampling is not implemented, spectral leakage will result, which in turn leads to inaccurate test results. In this paper, a combined four-parameter sine-curve-fitting algorithm is proposed incorporating non-coherent sampling, with the amplitude, initial phase, and frequency parameters of the sine wave being obtained by fitting. The corresponding coherent sine wave is then calculated and replaced according to the obtained sine wave to reconstruct the new test data, eliminating the requirement of coherent sampling. Numerous simulations demonstrated the functionality and robustness of the algorithm, which was then used to process and analyze the measured data of two commercial high-precision ADCs. The results show that our algorithm can achieve accurate testing of ADC parameters under relaxed test conditions, which verifies the effectiveness and superiority of the scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. High-Precision ADC Testing With Relaxed Reference Voltage Stationarity

2. Spectrum Aggregation Dual-Band Real-Time RF/Microwave Analog Signal Processing From Microstrip Line High-Frequency Hilbert Transformer

3. Modern computing methods for digital signal processing engineering systems;Poczekajlo;Proceedings of the 25th KES International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2021,2021

4. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters

5. IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter Devices

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3